Trial to Reduce *Mastomys natalensis* Abundance In Homes in Rural Sierra Leone

James T. Koninga, Alexandra L. Jaouiche, Lansana D. Kanneh, Ibrahim M. Kanneh, Franklyn Kanneh, Mohamed Y. Sankoh, Momoh Foday, Donald S. Grant, Lina M. Moses
Current State of Rodent Control for Lassa fever

• WHO guidelines for Lassa fever prevention and control:
 “promoting good ‘community hygiene’ to discourage rodents from entering homes. Effective measures include storing grain and other foodstuffs in rodent-proof containers, disposing of garbage far from home, maintaining clean households and keeping cats.”

• Efficacy of these recommendations has not been assessed and published
 • Only one Lassa fever rodent control trial for Lassa fever using rodenticides

• Cats as rodent control for Lassa
 • Unknown if cats can be infected and transmit Lassa virus
 • Cats are excellent predators of non-target species
 • Cats transmit other pathogens

• Other common methods for rodent control
 • Exclusion—preventing rodents from entering buildings
Study Design

20 Villages

Baseline Assessment
40 households per village randomly selected

Lassa fever education

Villages randomly selected to four groups*

Household Hygiene
Monthly monitoring

Structural Exclusion
Monthly monitoring

Extermination
Monthly monitoring
Resupply

Control

Post Intervention Assessment
40 households per village randomly selected

* No cats due to challenges acquiring a large number and unknown if can transmit Lassa virus
Household Hygiene

- Approach: Eliminate access to attractants in and near house (food, water)

- Each household received:
 - 20 gallon food container
 - 5 gallon water container

- Every three households received a concrete cover for rubbish pit and shovel

- Group of community advocates were selected for intensified training
Household Hygiene: Covered Rubbish Pits

- Consulting with WASH experts revealed no standard method for garbage/rubbage disposal in rural communities
- Communal disposal sites could act as potential attractants for rodents
- Organic waste material important for enriching soil in house gardens
- Designed and developed rubbish pit
 - Concrete square with hole and concrete lid
 - Pit was shallow (<1 meter deep) to ensure decomposing organic material continued to amend the top soil
 - Open area to reduce use as a latrine
 - Once pit was filled, another could be dug and concrete cover transferred
Structural Exclusion

• Approach: Prevent rodents from entering homes
• Mason constructed concrete thresholds to all house entrances
• Field team worked with residents to patch and fill exterior wall holes
• Group of community advocates were selected for intensified training
Extermination

• Approach: Eliminate rodents already in homes
• Each household received 2 snap traps, supply of indocin
• Local traps were encouraged
• Group of community advocates were selected for intensified training, responsible for resupplying houses between staff visits
Extermination: Pick Your Poison

• Previous surveys in area revealed
 • Poisoning is the most preferred method of rodent control
 • Commercial rodenticides were not favored due to health risk to small children and small livestock
• Indocin (indomethacin):
 • Readily available in pharmacies and traders for small cost
 • Open up capsule and distribute powder over cooked food as bait
 • Studies have shown gastric bleeding in rodents and death in rodents

--Omogbai et al. (2008). Drug and Chemical Toxicology 22(4):629-642
Safe Disposal

• Community advocates trained in safe disposal

• Safe Disposal
 o Handling of traps and carcasses with plastic bags
 o Local traps: buried with carcass
 o Snap traps: opened with plastic-covered hands, carcass buried
 o Poison: carcass buried with plastic bag
 o Hands washing afterwards

• Disinfection of snap traps
 o 1:100 solution of water and chlorine for 30 minutes
 o Air dry in sunlight
Results

• 100% of households reported using the intervention
• 100% were “Very satisfied” or “Satisfied” with intervention

• Reported adoption of household hygiene practices increased from baseline (3%) to post-intervention (12%) in villages that received hygiene education without material intervention

• Poison remained the most preferred method of rodent control after intervention

*out of 498 households surveyed
Observed Practice

14 months after intervention commencement
2 months after support and monitoring was discontinued

Percent of Households Observed

- Traps
- Poison
- Food Storage
- Water Storage
- Rubbish Disposal
- Clean Dishes
- Intact Door Threshold
- Visible Holes in Walls

Control Villages
Hygiene Villages
Exclusion Villages
Extermination Villages
Feedback

<table>
<thead>
<tr>
<th></th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Household Hygiene</td>
<td>• Materials are valued by residents</td>
<td>• Supply chain limited in rural areas</td>
</tr>
<tr>
<td></td>
<td>• Actions are familiar and easy to execute</td>
<td>• Cannot directly observe impact</td>
</tr>
<tr>
<td></td>
<td>• Containers and concrete covers were in good condition for entire trial</td>
<td>• Too expensive for households to obtain without assistance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Containers used for other purposes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Crop harvests cannot fit in containers</td>
</tr>
<tr>
<td>Structural Exclusion</td>
<td>• Filling holes in walls can be done with local materials at no cost</td>
<td>• Cement and labor is costly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Concrete thresholds eroded quickly (poor design)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Impossible to seal up homes made of mud and stick</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Doors remain open during the day so rodents can enter</td>
</tr>
<tr>
<td>Extermination</td>
<td>• Low cost</td>
<td>• Risk of exposure to infected carcasses</td>
</tr>
<tr>
<td></td>
<td>• Impact is observable</td>
<td>• Requires sustained effort and continuous reapplication</td>
</tr>
</tbody>
</table>

11
Unanticipated Community Innovations

• In one extermination village
 • Group of rodent control advocates was very active
 • Some apprehension among village residents about handling rodents
 • Began providing extermination services to households for a small fee

• In one hygiene village
 • One resident damaged the concrete cover of the pit shared with two other households
 • Council was called and resident was fined and ordered to replace the cover
Conclusions

• Poisoning remains the most popular method of rodent control
• Rodent-proof containers were valued and used for more reasons than rodent control, offering a sustainable motivation for their use
• Exclusion methods will not be effective unless housing quality improves
• Integrated Pest Management might be most effective and sustained approach
• Key communication point: Rodent control is a continuous battle, even when rodents are not observed
• Research need: Lassa virus infection and transmission in cats
• Work to be completed
 • Assessing efficacy of interventions by differences in rodent abundance from baseline assessment to post-intervention and compared to control villages
• Missed Opportunities
 • Qualitative methods could have provided richer information on motivation, preferences, access
Acknowledgements

Thanks to:
Households of the 20 participating communities

Thanks to our funders:

Our Team

Tulane University
Lina Moses
Alex Jaouiche
Robert Garry

Kenema Government Hospital
Donald Grant
James Koninga
Lansana Kanneh
Ibrahim Kanneh
Mohamed Yillah Sankoh
Franklyn Kanneh
Momoh Foday